
Mission possible:
DIY smart home
hub/controller

Martin Harizanov

Sofia, February 5th 2019

Agenda

● Agenda
● About me
● Goals
● Mission possible: DIY smart home

hub/controller
● Q/A

About

Martin Harizanov
Supervisor, Systems Engineering

 Visteon

What problem does this project solve?

Gateway ActuatorsSensors

Cloud

Phone app

Control hub

● Home automation control without

internet connection

● Shared controls access

● Cost reduction by having control hubs

and ‘dumb’ sensors/actuators

Requirements

● Control hub that integrates with the existing home automation

● Works regardless of the internet connectivity

● Visual and acoustic feedback

● Easy to use

● Reliable

● Low cost

Analysis steps

Customer Requirements

System Architecture

System Requirements HW
architecture

SW
architecture

Software Design
Requirements

Software functional
requirements

Mechanical

Hardware
Requirements

Mechanical
Requirements

Non-Functional requirements

Architecture Hardware Software Mechanics Design/UX

Localization, easy initial
setup, wireless

Color TFT with touch,
dimming, ambient light
sensing; buttons

Precise touch
detection/calibration

Option to hang on wall,
magnetic attachment,
compact size

Graphical HMI with
touch, buttons;
Antialiased fonts;

Usability

Ease with which the user is able to learn, operate, prepare inputs and interpret outputs through
interaction with the system

Multi-language

Localization
(TZ, units)SmartConfig

AP web config

WiFi config GUI Touch
calibration GUI

Touch
calibration in

flash GUI library
Configurable

“skins”

Non-Functional requirements

Architecture Hardware Software Mechanics Design/UX

Watchdog, OTA
recovery, safe mode,
degraded operation
mode, crash recovery,
task
isolation/prioritization

Thermal, EMI
consideration

Power management Durable moving parts

Reliability

Extent to which the system consistently performs the specified functions without failure

Non-Functional requirements

Architecture Hardware Software Mechanics Design/UX

TLS, RF encryption,
mutual authentication,
provisioning, access
PIN

Encryption chip Authentication on APIs,
DDoS rate limiter,
encrypted vFS, NVS

Reflashing port not
available without
product disassembly

Security

Extent to which the system is safeguarded against deliberate and intrusive faults from internal and
external sources

Non-Functional requirements

Architecture Hardware Software Mechanics Design/UX

Connections manager,
operational state
manager , fallback to
backup connection.
Revert to factory app

HW RTC to ensure time
availability regardless
of network availability,
RF control as alternative
to WiFi

Degraded (fail safe)
mode

Availability

Degree to which users can depend on the system to be up and able to function during normal operating
times

Non-Functional requirements

Architecture Hardware Software Mechanics Design/UX

Piezo buzzer for
acoustic feedback.
RGB LED for visual
feedback

Buttons easily
pressable

Large contrast icons,
color selection,
acoustic feedback,
visual feedback from
distance, lighting
sensing and brightness
adjustment

Accessibility

Extent to which the system can be used by people with the widest range of capabilities

..and more requirements

Non-functional

● Integrity

● Safety

● Environmental

● Flexibility

● Scalability

● Maintainability

● Performance

● Storage

● Regulatory

● .. and more

Functional

● Time & Date

● Temperature, Humidity, ambient light

● Configuration

● Connectivity management

● Diagnostics

● Security functions

● Power management

● Input devices

.. and more functional requirements

● Acoustic feedback

● Multi-language

● RF comms

● OTA

● Charts

● Thermostat

● HMI

● API

What is HMI?

Sensory stimuli Visual/acoustic/
vibration etc

ControlsResponses (motor,
acoustic)

Machine
State

Human
Information

processing and
decision making

Human MachineInterface

System functions diagram

OTA

GUI

security

env. sensing

power

diagnostics

clock/date

communication
protocols

communications

operating state data storage

visual feedback

audio

display

in-dev

illumination

Internal data

localization

application logic

System function allocation diagram

System function block example

SWCs design

SW time & date
manager

Enabled, TZ, DST, TimeFormat

rtc_datetime

ntp_datetime

api_datetime

● Signals include STATE e.g. VALID, ERR,
TMO, SNA

● SWC has cycle time, this particular runs every
1000ms

set_TZ

set_DST

set_TimeFormat

timestamp

hour

minute

second

day

DOW

month

year

DST

TZ

timeFormat

ampmFlag

Layered Architecture

IO Peripherals Memories CoresWiFi basebandBT Baseband

FreeRTOS

Drivers Bootloader

Middleware

Application

Communication Protocol StacksGUISW

HW

https://en.wikipedia.org/wiki/FreeRTOS#Supported_architectures
https://en.wikipedia.org/wiki/FreeRTOS#Supported_architectures

Fact break

78,337 lines of code as of todayThis project has

Partitions

● Flash layout
○ NVS for factory and user apps
○ Factory + user apps
○ VFS (SPIFFS, FAT etc)

App NVS

Factory NVS

Factory App

User App 1

User App 2

VFS

Bootloader

User Application

Operational states

Fail safe

Init

Normal

Configuration

OTA

Power-save

Degraded
mode

Factory
app

Power management strategies

● Dynamic Frequency Shifting
● Modem light sleep
● Variable WiFi transmission power
● Screen dimming
● GUI refresh rate reducing
● Peripheral sleep mode, whenever possible
● Overall: interrupt driven functionality vs polling

As a result: power consumption is ~60mA while
maintaining WiFi connection and being fully operational

OTA strategies

● OTA over web portal
● OTA over HTTPs
● OTA over MQTTs
● Compressed image OTA
● OTA rollback

○ Image verification
○ Tracking restarts due to crash

● Queued OTA
● OTA resume

DMA SPI and double buffering to speed up GUI rendering

DMA SPI VB2

VB1 VB2 VB1

DMA SPI VB1 DMA SPI VB2

VB2

DMA SPI VB1

VB1

30ms 30ms

SPI HW

CPU

30ms

Integrated Development Framework choice

● ESP-IDF using FreeRTOS
● Eclipse
● Github private repository

Fact break

7 months to developThis project took

Physical architecture

UController

TFT
ILI9341

Buttons

RF comms
RFM69

RGB LED
WS2812b

Temperature/H
umidity

HTU21D

Light sensor
LDR

FTDI
programming

interface

RTC
DS1338

Piezo Buzzer

WiFiBLE

1 PWM

1 RMT

SPI1 + CS + D/C
+ RST

1 UART

1 I2C

1 ADC

1 SPI2 + CS

 2 GPIO+2 GPIO with ADC and
IRQ

Touch
4-wire resistive

4 GPIO

HW encryption
module

ATSHA204

Flash

Screen
dimming

1 PWM

● GPIO 10 total (2 for touch + 3 for
TFT CS, D/C and RST + 4 buttons +1
for RF CS)

● PWM 2 total (1 for piezo, 1 for screen
dimming)

● RMT 1 total (1 for LED)
● SPI 2 SPI interfaces or 5 pins (1 for

TFT CLK, MOSI only and 1 for RF
CLS, MOSI, MISO)

● I2C 1 total or 2 pins
● ADC 3 total (1 for LDR and 2 for

touch screen)
● UART - 1 total or 2 pins (RX/TX)

~23 GPIO pins needed

SoC choice

● ESP32 is dual core containing a Protocol CPU (known
as CPU 0 or PRO_CPU) and an Application CPU
(known as CPU 1 or APP_CPU). The two cores are
identical in practice and share the same memory. This
allows the two cores to run tasks interchangeably
between them.

HW design

HW prototypes

Final version … after six PCB revisions

Mechanics - 3D PCB model for enclosure design

Mechanics - 3D printable enclosure

Mechanics - 3D printable enclosure

HMI Use cases

Setup
WiFi

Calibrate
Touch

Dimming
setup

About

Time/date
settings

Units
setup

Language
select

OTA

Thermost
at

Provisioni
ng

Reset to
Factory

View
charts

Thermost
at

schedule

Sound
setup

Clock

Pairing

Menu structure

Settings

WiFi

Manual

Smartconfig

Web portal

Display
Brightness

Screensaver

Wifi
On/Off

Calibration

*Manual
*Auto

Localization
Language

Time & date

Units

Sound

About
FW update

LED

Charts

Thermost
at

Clock

Schedule

More
settings

RF Pairing

Reset

Menu design

Main menu

Item Item Item

Item Item Settings

Sub-menu

Back Item Item

Item ItemItem

Menu design

App

Back Next

Thermostat

Back

21.5*C
Manual

Boost

18.2*C

Off

Schedule

Menu design

WiFi settings

Back Next

List of networks

Select network

WiFi settings

Back Next

Enter password

QWERTY keyboard

Challenges

● Driver conversion to FreeRTOS
● Temperature skew
● Enclosure design
● DMA, double video buffers
● Overall R&D process, as this is my first project using ESP32

Future plans

● Larger 3.5” TFT
● LoRa support
● No buttons, thin frame
● More powerful ESP32 package

with PSRAM support
● Improved firmware functions

Questions?

