Mission possible: DIY smart home hub/controller

Martin Harizanov

Sofia, February 5th 2019

Agenda

- Agenda
- About me
- Goals
- Mission possible: DIY smart home hub/controller
- Q/A

About

Martin Harizanov

Supervisor, Systems Engineering Visteon

Requirements

- Control hub that integrates with the existing home automation
- Works regardless of the internet connectivity
- Visual and acoustic feedback
- Easy to use
- Reliable
- Low cost

Usability

Ease with which the user is able to learn, operate, prepare inputs and interpret outputs through interaction with the system

Reliability

Extent to which the system consistently performs the specified functions without failure

Architecture	Hardware	Software	Mechanics	Design/UX
Watchdog, OTA recovery, safe mode, degraded operation mode, crash recovery, task isolation/prioritization	Thermal, EMI consideration	Power management	Durable moving parts	

Security

Extent to which the system is safeguarded against deliberate and intrusive faults from internal and external sources

Architecture	Hardware	Software	Mechanics	Design/UX
TLS, RF encryption, mutual authentication, provisioning, access PIN	Encryption chip	Authentication on APIs, DDoS rate limiter, encrypted vFS, NVS	Reflashing port not available without product disassembly	

Availability

Degree to which users can depend on the system to be up and able to function during normal operating times

Architecture	Hardware	Software	Mechanics	Design/UX
Connections manager, operational state manager , fallback to backup connection. Revert to factory app	HW RTC to ensure time availability regardless of network availability, RF control as alternative to WiFi	Degraded (fail safe) mode		

Accessibility

Extent to which the system can be used by people with the widest range of capabilities

Architecture	Hardware	Software	Mechanics	Design/UX
	Piezo buzzer for acoustic feedback. RGB LED for visual feedback		Buttons easily pressable	Large contrast icons, color selection, acoustic feedback, visual feedback from distance, lighting sensing and brightness adjustment

..and more requirements

Non-functional

- Integrity
- Safety
- Environmental
- Flexibility
- Scalability
- Maintainability
- Performance
- Storage
- Regulatory
- .. and more

Functional

- Time & Date
- Temperature, Humidity, ambient light •
- Configuration
- Connectivity management
- Diagnostics
- Security functions
- Power management
- Input devices

.. and more functional requirements

- Acoustic feedback
- Multi-language
- RF comms
- OTA
- Charts
- Thermostat
- HMI
- API

System functions diagram

System function allocation diagram

System function block example

Layered Architecture

Fact break

This project has

78,337 lines of code as of today

Partitions

- Flash layout
 - NVS for factory and user apps
 - Factory + user apps
 - VFS (SPIFFS, FAT etc)

Power management strategies

- Dynamic Frequency Shifting
- Modem light sleep
- Variable WiFi transmission power
- Screen dimming
- GUI refresh rate reducing
- Peripheral sleep mode, whenever possible
- Overall: interrupt driven functionality vs polling

As a result: power consumption is ~60mA while maintaining WiFi connection and being fully operational

CPU freq	current consumption
XTAL(40MHz)	13.32mA
80MHz	22.85mA
160MHz	28.46mA
240MHz	39.95mA

OTA strategies

- OTA over web portal
- OTA over HTTPs
- OTA over MQTTs
- Compressed image OTA
- OTA rollback
 - Image verification
 - Tracking restarts due to crash
- Queued OTA
- OTA resume

DMA SPI and double buffering to speed up GUI rendering

Integrated Development Framework choice

- ESP-IDF using FreeRTOS
- Eclipse
- Github private repository

SoC choice

 ESP32 is dual core containing a Protocol CPU (known as CPU 0 or PRO_CPU) and an Application CPU (known as CPU 1 or APP_CPU). The two cores are identical in practice and share the same memory. This allows the two cores to run tasks interchangeably between them.

Mechanics - 3D PCB model for enclosure design

Mechanics - 3D printable enclosure

Mechanics - 3D printable enclosure

Wifi On/Off Manual Thermost Menu structure at WiFi Smartconfig Web portal Schedule *Manual *Auto Brightness Display Screensaver Charts Calibration LED Sound Language Clock Localization Time & date More Reset settings Units Settings **RF** Pairing About FW update

Menu design

Menu design

Menu design

Û	WiFi settings	
Back	Enter password	Next

	QWERTY keyboard	

Challenges

- Driver conversion to FreeRTOS
- Temperature skew
- Enclosure design
- DMA, double video buffers
- Overall R&D process, as this is my first project using ESP32

Future plans

- Larger 3.5" TFT
- LoRa support
- No buttons, thin frame
- More powerful ESP32 package with PSRAM support
- Improved firmware functions

Questions?